Chapter 12: Problem 81
Suppose an object moves on the surface of a sphere with \(|\mathbf{r}(t)|\) constant for all \(t\) Show that \(\mathbf{r}(t)\) and \(\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)\) satisfy \(\mathbf{r}(t) \cdot \mathbf{a}(t)=-|\mathbf{v}(t)|^{2}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.