Chapter 12: Problem 80
Consider the ellipse \(\mathbf{r}(t)=\langle a \cos t, b \sin t\rangle\) for \(0 \leq t \leq 2 \pi,\) where \(a\) and \(b\) are real numbers. Let \(\theta\) be the angle between the position vector and the \(x\) -axis. a. Show that \(\tan \theta=(b / a) \tan t\) b. Find \(\theta^{\prime}(t)\) c. Note that the area bounded by the polar curve \(r=f(\theta)\) on the interval \([0, \theta]\) is \(A(\theta)=\frac{1}{2} \int_{0}^{\theta}(f(u))^{2} d u\) Letting \(f(\theta(t))=|\mathbf{r}(\theta(t))|,\) show that \(A^{\prime}(t)=\frac{1}{2} a b\) d. Conclude that as an object moves around the ellipse, it sweeps out equal areas in equal times.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.