Chapter 12: Problem 80
a. Show that \((\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=|\mathbf{u}|^{2}+2 \mathbf{u} \cdot \mathbf{v}+|\mathbf{v}|^{2}\). b. Show that \((\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}\) if \(\mathbf{u}\) is perpendicular to \(\mathbf{v}\). c. Show that \((\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})=|\mathbf{u}|^{2}-|\mathbf{v}|^{2}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.