Chapter 12: Problem 78
Relationship between \(\mathbf{T}, \mathbf{N},\) and a Show that if an object accelerates in the sense that \(d^{2} s / d t^{2}>0\) and \(\kappa \neq 0,\) then the acceleration vector lies between \(\mathbf{T}\) and \(\mathbf{N}\) in the plane of \(\mathbf{T}\) and \(\mathbf{N}\). If an object decelerates in the sense that \(d^{2} s / d t^{2}<0,\) then the acceleration vector lies in the plane of \(\mathbf{T}\) and \(\mathbf{N},\) but not between \(\mathbf{T}\) and \(\mathbf{N}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.