Chapter 12: Problem 78
Let \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\). a. Assume that \(\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle,\) which means that $$\begin{aligned} &\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0 . \text { Prove that }\\\ &\lim _{t \rightarrow a} f(t)=L_{1}, \quad \lim _{t \rightarrow a} g(t)=L_{2}, \text { and } \lim _{t \rightarrow a} h(t)=L_{3}. \end{aligned}$$ $$\begin{aligned} &\text { b. Assume that } \lim _{t \rightarrow a} f(t)=L_{1}, \lim _{t \rightarrow a} g(t)=L_{2}, \text { and }\\\ &\lim _{t \rightarrow a} h(t)=L_{3} . \text { Prove that } \lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3},\right\rangle\\\ &\text { which means that } \lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0. \end{aligned}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.