Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The points \(O(0,0,0), P(1,4,6),\) and \(Q(2,4,3)\) lie at three vertices of a parallelogram. Find all possible locations of the fourth vertex.

Short Answer

Expert verified
Answer: The two possible coordinates of the fourth vertex are \(R_1 = (1,0,-3)\) and \(R_2 = (3,8,9)\).

Step by step solution

01

Understanding the properties of a parallelogram

A parallelogram is a quadrilateral with both pairs of opposite sides parallel. In this case, either OP is parallel to the fourth vertex and PQ or OQ is parallel to the fourth vertex and P. For each case, we'll use vector addition to find the possible coordinates of the fourth vertex.
02

Calculate the vector OP and PQ

We are given the coordinates of points O(0,0,0), P(1,4,6), and Q(2,4,3). First, we calculate the vectors from point O to point P and from point P to point Q: Vector OP: \(\overrightarrow{OP} = P - O = (1,4,6)\). Vector PQ: \(\overrightarrow{PQ} = Q - P = (1,0,-3)\).
03

Find the first possible fourth vertex

The first possibility is when PQ is parallel to the fourth vertex and O, so we add the vector PQ to point O to find the first possible fourth vertex: Fourth vertex: \(R_1 = O + \overrightarrow{PQ} = (0+1, 0+0, 0-3) = (1,0,-3)\).
04

Calculate the vector OQ

Next, we calculate the vector from point O to point Q: Vector OQ: \(\overrightarrow{OQ} = Q - O = (2,4,3)\).
05

Find the second possible fourth vertex

The second possibility is when OP is parallel to the fourth vertex and Q, so we add the vector OP to point Q to find the second possible fourth vertex: Fourth vertex: \(R_2 = Q + \overrightarrow{OP} = (2+1, 4+4, 3+6) = (3,8,9)\).
06

Present the two possible fourth vertices

Based on our calculations, there are two possible locations for the fourth vertex of the parallelogram: 1. \(R_1 = (1,0,-3)\) 2. \(R_2 = (3,8,9)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|(\text {because}|\cos \theta| \leq 1) .\) This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Consider the vectors \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{u}+\mathbf{v}\) (in any number of dimensions). Use the following steps to prove that \(|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|\). a. Show that \(|\mathbf{u}+\mathbf{v}|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=|\mathbf{u}|^{2}+\) \(2 \mathbf{u} \cdot \mathbf{v}+|\mathbf{v}|^{2}\). b. Use the Cauchy-Schwarz Inequality to show that \(|\mathbf{u}+\mathbf{v}|^{2} \leq(|\mathbf{u}|+|\mathbf{v}|)^{2}\). c. Conclude that \(|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|\). d. Interpret the Triangle Inequality geometrically in \(\mathbb{R}^{2}\) or \(\mathbb{R}^{3}\).

Zero curvature Prove that the curve $$ \mathbf{r}(t)=\left\langle a+b t^{p}, c+d t^{p}, e+f t^{p}\right\rangle $$ where \(a, b, c, d, e,\) and \(f\) are real numbers and \(p\) is a positive integer, has zero curvature. Give an explanation.

Derive the formulas for time of flight, range, and maximum height in the case that an object is launched from the initial position \(\left\langle 0, y_{0}\right\rangle\) with initial velocity \(\left|\mathbf{v}_{0}\right|\langle\cos \alpha, \sin \alpha\rangle\).

An object on an inclined plane does not slide provided the component of the object's weight parallel to the plane \(\left|\mathbf{W}_{\text {par }}\right|\) is less than or equal to the magnitude of the opposing frictional force \(\left|\mathbf{F}_{\mathrm{f}}\right|\). The magnitude of the frictional force, in turn, is proportional to the component of the object's weight perpendicular to the plane \(\left|\mathbf{W}_{\text {perp }}\right|\) (see figure). The constant of proportionality is the coefficient of static friction, \(\mu\) a. Suppose a 100 -lb block rests on a plane that is tilted at an angle of \(\theta=20^{\circ}\) to the horizontal. Find \(\left|\mathbf{W}_{\text {parl }}\right|\) and \(\left|\mathbf{W}_{\text {perp }}\right|\) b. The condition for the block not sliding is \(\left|\mathbf{W}_{\mathrm{par}}\right| \leq \mu\left|\mathbf{W}_{\text {perp }}\right| .\) If \(\mu=0.65,\) does the block slide? c. What is the critical angle above which the block slides with \(\mu=0.65 ?\)

An object moves along a straight line from the point \(P(1,2,4)\) to the point \(Q(-6,8,10)\) a. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with a constant speed over the time interval [0,5] b. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with speed \(e^{t}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free