Chapter 12: Problem 75
The function \(f(x)=\sin n x,\) where \(n\) is a positive real number, has a local maximum at \(x=\pi /(2 n)\) Compute the curvature \(\kappa\) of \(f\) at this point. How does \(\kappa\) vary (if at all) as \(n\) varies?
Chapter 12: Problem 75
The function \(f(x)=\sin n x,\) where \(n\) is a positive real number, has a local maximum at \(x=\pi /(2 n)\) Compute the curvature \(\kappa\) of \(f\) at this point. How does \(\kappa\) vary (if at all) as \(n\) varies?
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the following statements are true using a proof or counterexample. Assume that \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are nonzero vectors in \(\mathbb{R}^{3}\). $$\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$$
For the following vectors u and \(\mathbf{v}\) express u as the sum \(\mathbf{u}=\mathbf{p}+\mathbf{n},\) where \(\mathbf{p}\) is parallel to \(\mathbf{v}\) and \(\mathbf{n}\) is orthogonal to \(\mathbf{v}\). \(\mathbf{u}=\langle-1,2,3\rangle, \mathbf{v}=\langle 2,1,1\rangle\)
Find the domains of the following vector-valued functions. $$\mathbf{r}(t)=\sqrt{t+2} \mathbf{i}+\sqrt{2-t} \mathbf{j}$$
Torsion formula Show that the formula defining the torsion, \(\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N},\) is equivalent to \(\tau=-\frac{1}{|\mathbf{v}|} \frac{d \mathbf{B}}{d t} \cdot \mathbf{N} .\) The second formula is generally easier to use.
Given a fixed vector \(\mathbf{v},\) there is an infinite set of vectors \(\mathbf{u}\) with the same value of proj\(_{\mathbf{v}} \mathbf{u}\). Let \(\mathbf{v}=\langle 0,0,1\rangle .\) Give a description of all position vectors \(\mathbf{u}\) such that \(\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\operatorname{proj}_{\mathbf{v}}\langle 1,2,3\rangle\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.