Chapter 12: Problem 75
Imagine three unit spheres (radius equal to 1 ) with centers at \(O(0,0,0), P(\sqrt{3},-1,0)\) and \(Q(\sqrt{3}, 1,0) .\) Now place another unit sphere symmetrically on top of these spheres with its center at \(R\) (see figure). a. Find the coordinates of \(R\). (Hint: The distance between the centers of any two spheres is 2.) b. Let \(\mathbf{r}_{i j}\) be the vector from the center of sphere \(i\) to the center of sphere \(j .\) Find \(\mathbf{r}_{O P}, \mathbf{r}_{O Q}, \mathbf{r}_{P Q}, \mathbf{r}_{O R},\) and \(\mathbf{r}_{P R}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.