Chapter 12: Problem 72
Determine the values of \(x\) and \(y\) such that the points \((1,2,3),(4,7,1),\) and \((x, y, 2)\) are collinear (lie on a line).
Chapter 12: Problem 72
Determine the values of \(x\) and \(y\) such that the points \((1,2,3),(4,7,1),\) and \((x, y, 2)\) are collinear (lie on a line).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following limits. $$\lim _{t \rightarrow 2}\left(\frac{t}{t^{2}+1} \mathbf{i}-4 e^{-t} \sin \pi t \mathbf{j}+\frac{1}{\sqrt{4 t+1}} \mathbf{k}\right)$$
For the given points \(P, Q,\) and \(R,\) find the approximate measurements of the angles of \(\triangle P Q R\). $$P(0,-1,3), Q(2,2,1), R(-2,2,4)$$
Determine whether the following statements are true and give an explanation or counterexample. a. The line \(\mathbf{r}(t)=\langle 3,-1,4\rangle+t\langle 6,-2,8\rangle\) passes through the origin. b. Any two nonparallel lines in \(\mathbb{R}^{3}\) intersect. c. The curve \(\mathbf{r}(t)=\left\langle e^{-t}, \sin t,-\cos t\right\rangle\) approaches a circle as \(t \rightarrow \infty\). d. If \(\mathbf{r}(t)=e^{-t^{2}}\langle 1,1,1\rangle\) then \(\lim _{t \rightarrow \infty} \mathbf{r}(t)=\lim _{t \rightarrow-\infty} \mathbf{r}(t)\).
Show that the two-dimensional trajectory $$x(t)=u_{0} t+x_{0}\( and \)y(t)=-\frac{g t^{2}}{2}+v_{0} t+y_{0},\( for \)0 \leq t \leq T$$ of an object moving in a gravitational field is a segment of a parabola for some value of \(T>0 .\) Find \(T\) such that \(y(T)=0\)
Determine whether the following statements are true using a proof or counterexample. Assume that \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are nonzero vectors in \(\mathbb{R}^{3}\). $$\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.