Chapter 12: Problem 70
Find vectors parallel to \(\mathbf{v}\) of the given length. $$\mathbf{v}=\overrightarrow{P Q} \text { with } P(1,0,1) \text { and } Q(2,-1,1) ; \text { length }=3$$
Chapter 12: Problem 70
Find vectors parallel to \(\mathbf{v}\) of the given length. $$\mathbf{v}=\overrightarrow{P Q} \text { with } P(1,0,1) \text { and } Q(2,-1,1) ; \text { length }=3$$
All the tools & learning materials you need for study success - in one app.
Get started for freeZero curvature Prove that the curve $$ \mathbf{r}(t)=\left\langle a+b t^{p}, c+d t^{p}, e+f t^{p}\right\rangle $$ where \(a, b, c, d, e,\) and \(f\) are real numbers and \(p\) is a positive integer, has zero curvature. Give an explanation.
Let \(D\) be a solid heat-conducting cube formed by the planes \(x=0, x=1, y=0, y=1, z=0,\) and \(z=1 .\) The heat flow at every point of \(D\) is given by the constant vector \(\mathbf{Q}=\langle 0,2,1\rangle\) a. Through which faces of \(D\) does \(Q\) point into \(D ?\) b. Through which faces of \(D\) does \(\mathbf{Q}\) point out of \(D ?\) c. On which faces of \(D\) is \(Q\) tangential to \(D\) (pointing neither in nor out of \(D\) )? d. Find the scalar component of \(\mathbf{Q}\) normal to the face \(x=0\). e. Find the scalar component of \(\mathbf{Q}\) normal to the face \(z=1\). f. Find the scalar component of \(\mathbf{Q}\) normal to the face \(y=0\).
Evaluate the following limits. $$\lim _{t \rightarrow \pi / 2}\left(\cos 2 t \mathbf{i}-4 \sin t \mathbf{j}+\frac{2 t}{\pi} \mathbf{k}\right)$$
The points \(O(0,0,0), P(1,4,6),\) and \(Q(2,4,3)\) lie at three vertices of a parallelogram. Find all possible locations of the fourth vertex.
Evaluate the following limits. $$\lim _{t \rightarrow \ln 2}\left(2 e^{t} \mathbf{i}+6 e^{-t} \mathbf{j}-4 e^{-2 t} \mathbf{k}\right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.