Chapter 12: Problem 69
\(\mathbb{R}^{3}\) Consider the vectors \(\mathbf{I}=\langle 1 / 2,1 / 2,1 / \sqrt{2}), \mathbf{J}=\langle-1 / \sqrt{2}, 1 / \sqrt{2}, 0\rangle,\) and \(\mathbf{K}=\langle 1 / 2,1 / 2,-1 / \sqrt{2}\rangle\) a. Sketch I, J, and K and show that they are unit vectors. b. Show that \(\mathbf{I}, \mathbf{J},\) and \(\mathbf{K}\) are pairwise orthogonal. c. Express the vector \langle 1,0,0\rangle in terms of \(\mathbf{I}, \mathbf{J},\) and \(\mathbf{K}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.