Chapter 12: Problem 69
Find vectors parallel to \(\mathbf{v}\) of the given length. $$\mathbf{v}=\overrightarrow{P Q} \text { with } P(3,4,0) \text { and } Q(2,3,1) ; \text { length }=3$$
Chapter 12: Problem 69
Find vectors parallel to \(\mathbf{v}\) of the given length. $$\mathbf{v}=\overrightarrow{P Q} \text { with } P(3,4,0) \text { and } Q(2,3,1) ; \text { length }=3$$
All the tools & learning materials you need for study success - in one app.
Get started for freeA golfer launches a tee shot down a horizontal fairway and it follows a path given by \(\mathbf{r}(t)=\left\langle a t,(75-0.1 a) t,-5 t^{2}+80 t\right\rangle,\) where \(t \geq 0\) measures time in seconds and \(\mathbf{r}\) has units of feet. The \(y\) -axis points straight down the fairway and the z-axis points vertically upward. The parameter \(a\) is the slice factor that determines how much the shot deviates from a straight path down the fairway. a. With no slice \((a=0),\) sketch and describe the shot. How far does the ball travel horizontally (the distance between the point the ball leaves the ground and the point where it first strikes the ground)? b. With a slice \((a=0.2),\) sketch and describe the shot. How far does the ball travel horizontally? c. How far does the ball travel horizontally with \(a=2.5 ?\)
The function \(f(x)=\sin n x,\) where \(n\) is a positive real number, has a local maximum at \(x=\pi /(2 n)\) Compute the curvature \(\kappa\) of \(f\) at this point. How does \(\kappa\) vary (if at all) as \(n\) varies?
The points \(P, Q, R,\) and \(S,\) joined by the vectors \(\mathbf{u}, \mathbf{v}, \mathbf{w},\) and \(\mathbf{x},\) are the vertices of a quadrilateral in \(\mathrm{R}^{3}\). The four points needn't lie in \(a\) plane (see figure). Use the following steps to prove that the line segments joining the midpoints of the sides of the quadrilateral form a parallelogram. The proof does not use a coordinate system. a. Use vector addition to show that \(\mathbf{u}+\mathbf{v}=\mathbf{w}+\mathbf{x}\) b. Let \(m\) be the vector that joins the midpoints of \(P Q\) and \(Q R\) Show that \(\mathbf{m}=(\mathbf{u}+\mathbf{v}) / 2\) c. Let n be the vector that joins the midpoints of \(P S\) and \(S R\). Show that \(\mathbf{n}=(\mathbf{x}+\mathbf{w}) / 2\) d. Combine parts (a), (b), and (c) to conclude that \(\mathbf{m}=\mathbf{n}\) e. Explain why part (d) implies that the line segments joining the midpoints of the sides of the quadrilateral form a parallelogram.
Assume that \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{w}\) are vectors in \(\mathrm{R}^{3}\) that form the sides of a triangle (see figure). Use the following steps to prove that the medians intersect at a point that divides each median in a 2: 1 ratio. The proof does not use a coordinate system. a. Show that \(\mathbf{u}+\mathbf{v}+\mathbf{w}=\mathbf{0}\) b. Let \(\mathbf{M}_{1}\) be the median vector from the midpoint of \(\mathbf{u}\) to the opposite vertex. Define \(\mathbf{M}_{2}\) and \(\mathbf{M}_{3}\) similarly. Using the geometry of vector addition show that \(\mathbf{M}_{1}=\mathbf{u} / 2+\mathbf{v} .\) Find analogous expressions for \(\mathbf{M}_{2}\) and \(\mathbf{M}_{3}\) c. Let \(a, b,\) and \(c\) be the vectors from \(O\) to the points one-third of the way along \(\mathbf{M}_{1}, \mathbf{M}_{2},\) and \(\mathbf{M}_{3},\) respectively. Show that \(\mathbf{a}=\mathbf{b}=\mathbf{c}=(\mathbf{u}-\mathbf{w}) / 3\) d. Conclude that the medians intersect at a point that divides each median in a 2: 1 ratio.
For the following vectors u and \(\mathbf{v}\) express u as the sum \(\mathbf{u}=\mathbf{p}+\mathbf{n},\) where \(\mathbf{p}\) is parallel to \(\mathbf{v}\) and \(\mathbf{n}\) is orthogonal to \(\mathbf{v}\). \(\mathbf{u}=\langle-2,2\rangle, \mathbf{v}=\langle 2,1\rangle\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.