Chapter 12: Problem 69
Consider the curve described by the vector function \(\mathbf{r}(t)=\left(50 e^{-t} \cos t\right) \mathbf{i}+\left(50 e^{-t} \sin t\right) \mathbf{j}+\left(5-5 e^{-t}\right) \mathbf{k},\) for \(t \geq 0\). a. What is the initial point of the path corresponding to \(\mathbf{r}(0) ?\) b. What is \(\lim _{t \rightarrow \infty} \mathbf{r}(t) ?\) c. Sketch the curve. d. Eliminate the parameter \(t\) to show that \(z=5-r / 10\), where \(r^{2}=x^{2}+y^{2}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.