Chapter 12: Problem 66
Find the points (if they exist) at which the following planes and curves intersect. $$y+x=0 ; \mathbf{r}(t)=\langle\cos t, \sin t, t\rangle, \text { for } 0 \leq t \leq 4 \pi$$
Chapter 12: Problem 66
Find the points (if they exist) at which the following planes and curves intersect. $$y+x=0 ; \mathbf{r}(t)=\langle\cos t, \sin t, t\rangle, \text { for } 0 \leq t \leq 4 \pi$$
All the tools & learning materials you need for study success - in one app.
Get started for freeCarry out the following steps to determine the (smallest) distance between the point \(P\) and the line \(\ell\) through the origin. a. Find any vector \(\mathbf{v}\) in the direction of \(\ell\) b. Find the position vector u corresponding to \(P\). c. Find \(\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). d. Show that \(\mathbf{w}=\mathbf{u}-\) projy \(\mathbf{u}\) is a vector orthogonal to \(\mathbf{v}\) whose length is the distance between \(P\) and the line \(\ell\) e. Find \(\mathbf{w}\) and \(|\mathbf{w}| .\) Explain why \(|\mathbf{w}|\) is the distance between \(P\) and \(\ell\). \(P(1,1,-1) ; \ell\) has the direction of $$\langle-6,8,3\rangle$$.
Determine the equation of the line that is perpendicular to the lines \(\mathbf{r}(t)=\langle 4 t, 1+2 t, 3 t\rangle\) and \(\mathbf{R}(s)=\langle-1+s,-7+2 s,-12+3 s\rangle\) and passes through the point of intersection of the lines \(\mathbf{r}\) and \(\mathbf{R}\).
Two sides of a parallelogram are formed by the vectors \(\mathbf{u}\) and \(\mathbf{v}\). Prove that the diagonals of the parallelogram are \(\mathbf{u}+\mathbf{v}\) and \(\mathbf{u}-\mathbf{v}\)
Torsion formula Show that the formula defining the torsion, \(\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N},\) is equivalent to \(\tau=-\frac{1}{|\mathbf{v}|} \frac{d \mathbf{B}}{d t} \cdot \mathbf{N} .\) The second formula is generally easier to use.
Find the point (if it exists) at which the following planes and lines intersect. $$z=-8 ; \mathbf{r}(t)=\langle 3 t-2, t-6,-2 t+4\rangle$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.