Chapter 12: Problem 66
Evaluate the following definite integrals. $$\int_{0}^{\pi / 4}\left(\sec ^{2} t \mathbf{i}-2 \cos t \mathbf{j}-\mathbf{k}\right) d t$$
Chapter 12: Problem 66
Evaluate the following definite integrals. $$\int_{0}^{\pi / 4}\left(\sec ^{2} t \mathbf{i}-2 \cos t \mathbf{j}-\mathbf{k}\right) d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the lines $$\begin{aligned} \mathbf{r}(t) &=\langle 2+2 t, 8+t, 10+3 t\rangle \text { and } \\ \mathbf{R}(s) &=\langle 6+s, 10-2 s, 16-s\rangle. \end{aligned}$$ a. Determine whether the lines intersect (have a common point) and if so, find the coordinates of that point. b. If \(\mathbf{r}\) and \(\mathbf{R}\) describe the paths of two particles, do the particles collide? Assume \(t \geq 0\) and \(s \approx 0\) measure time in seconds, and that motion starts at \(s=t=0\).
Consider the curve described by the vector function \(\mathbf{r}(t)=\left(50 e^{-t} \cos t\right) \mathbf{i}+\left(50 e^{-t} \sin t\right) \mathbf{j}+\left(5-5 e^{-t}\right) \mathbf{k},\) for \(t \geq 0\). a. What is the initial point of the path corresponding to \(\mathbf{r}(0) ?\) b. What is \(\lim _{t \rightarrow \infty} \mathbf{r}(t) ?\) c. Sketch the curve. d. Eliminate the parameter \(t\) to show that \(z=5-r / 10\), where \(r^{2}=x^{2}+y^{2}\).
The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|(\text {because}|\cos \theta| \leq 1) .\) This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Show that for real numbers \(u_{1}, u_{2},\) and \(u_{3},\) it is true that \(\left(u_{1}+u_{2}+u_{3}\right)^{2} \leq 3\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)\). (Hint: Use the Cauchy-Schwarz Inequality in three dimensions with \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) and choose \(\mathbf{v}\) in the right way.)
Determine the equation of the line that is perpendicular to the lines \(\mathbf{r}(t)=\langle 4 t, 1+2 t, 3 t\rangle\) and \(\mathbf{R}(s)=\langle-1+s,-7+2 s,-12+3 s\rangle\) and passes through the point of intersection of the lines \(\mathbf{r}\) and \(\mathbf{R}\).
Derive the formulas for time of flight, range, and maximum height in the case that an object is launched from the initial position \(\left\langle 0, y_{0}\right\rangle\) with initial velocity \(\left|\mathbf{v}_{0}\right|\langle\cos \alpha, \sin \alpha\rangle\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.