Chapter 12: Problem 62
Evaluate the following definite integrals. $$\int_{1 / 2}^{1}\left(\frac{3}{1+2 t} \mathbf{i}-\pi \csc ^{2}\left(\frac{\pi}{2} t\right) \mathbf{k}\right) d t$$
Chapter 12: Problem 62
Evaluate the following definite integrals. $$\int_{1 / 2}^{1}\left(\frac{3}{1+2 t} \mathbf{i}-\pi \csc ^{2}\left(\frac{\pi}{2} t\right) \mathbf{k}\right) d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|(\text {because}|\cos \theta| \leq 1) .\) This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Verify that the Cauchy-Schwarz Inequality holds for \(\mathbf{u}=\langle 3,-5,6\rangle\) and \(\mathbf{v}=\langle-8,3,1\rangle\).
Zero curvature Prove that the curve $$ \mathbf{r}(t)=\left\langle a+b t^{p}, c+d t^{p}, e+f t^{p}\right\rangle $$ where \(a, b, c, d, e,\) and \(f\) are real numbers and \(p\) is a positive integer, has zero curvature. Give an explanation.
For the following vectors u and \(\mathbf{v}\) express u as the sum \(\mathbf{u}=\mathbf{p}+\mathbf{n},\) where \(\mathbf{p}\) is parallel to \(\mathbf{v}\) and \(\mathbf{n}\) is orthogonal to \(\mathbf{v}\). \(\mathbf{u}=\langle 4,3\rangle, \mathbf{v}=\langle 1,1\rangle\)
Maximum curvature Consider the "superparabolas" \(f_{n}(x)=x^{2 n},\) where \(n\) is a positive integer. a. Find the curvature function of \(f_{n},\) for \(n=1,2,\) and 3 b. Plot \(f_{n}\) and their curvature functions, for \(n=1,2,\) and 3 and check for consistency. c. At what points does the maximum curvature occur, for \(n=1,2,3 ?\) d. Let the maximum curvature for \(f_{n}\) occur at \(x=\pm z_{n} .\) Using either analytical methods or a calculator determine \(\lim _{n \rightarrow \infty} z_{n}\) Interpret your result.
Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\), and \(\mathbf{w}=\) \(\left\langle w_{1}, w_{2}, w_{3}\right\rangle\). Let \(c\) be a scalar. Prove the following vector properties. \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.