Chapter 12: Problem 60
Evaluate the following definite integrals. $$\int_{1}^{4}\left(6 t^{2} \mathbf{i}+8 t^{3} \mathbf{j}+9 t^{2} \mathbf{k}\right) d t$$
Chapter 12: Problem 60
Evaluate the following definite integrals. $$\int_{1}^{4}\left(6 t^{2} \mathbf{i}+8 t^{3} \mathbf{j}+9 t^{2} \mathbf{k}\right) d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeA baseball leaves the hand of a pitcher 6 vertical feet above home plate and \(60 \mathrm{ft}\) from home plate. Assume that the coordinate axes are oriented as shown in the figure. a. In the absence of all forces except gravity, assume that a pitch is thrown with an initial velocity of \(\langle 130,0,-3\rangle \mathrm{ft} / \mathrm{s}\) (about \(90 \mathrm{mi} / \mathrm{hr}\) ). How far above the ground is the ball when it crosses home plate and how long does it take for the pitch to arrive? b. What vertical velocity component should the pitcher use so that the pitch crosses home plate exactly \(3 \mathrm{ft}\) above the ground? c. A simple model to describe the curve of a baseball assumes that the spin of the ball produces a constant sideways acceleration (in the \(y\) -direction) of \(c \mathrm{ft} / \mathrm{s}^{2}\). Assume a pitcher throws a curve ball with \(c=8 \mathrm{ft} / \mathrm{s}^{2}\) (one-fourth the acceleration of gravity). How far does the ball move in the \(y\) -direction by the time it reaches home plate, assuming an initial velocity of (130,0,-3) ft/s? d. In part (c), does the ball curve more in the first half of its trip to the plate or in the second half? How does this fact affect the batter? e. Suppose the pitcher releases the ball from an initial position of (0,-3,6) with initial velocity \((130,0,-3) .\) What value of the spin parameter \(c\) is needed to put the ball over home plate passing through the point (60,0,3)\(?\)
Evaluate the following limits. $$\lim _{t \rightarrow 2}\left(\frac{t}{t^{2}+1} \mathbf{i}-4 e^{-t} \sin \pi t \mathbf{j}+\frac{1}{\sqrt{4 t+1}} \mathbf{k}\right)$$
Alternative derivation of the curvature Derive the computational formula for curvature using the following steps. a. Use the tangential and normal components of the acceleration to show that \(\left.\mathbf{v} \times \mathbf{a}=\kappa|\mathbf{v}|^{3} \mathbf{B} . \text { (Note that } \mathbf{T} \times \mathbf{T}=\mathbf{0} .\right)\) b. Solve the equation in part (a) for \(\kappa\) and conclude that \(\kappa=\frac{|\mathbf{v} \times \mathbf{a}|}{\left|\mathbf{v}^{3}\right|},\) as shown in the text.
Prove that the midpoint of the line segment joining \(P\left(x_{1}, y_{1}, z_{1}\right)\) and \(Q\left(x_{2}, y_{2}, z_{2}\right)\) is $$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$$
Consider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and fare real numbers. It can be shown that this curve lies in a plane. Graph the following curve and describe it. $$\begin{aligned} \mathbf{r}(t)=&\left(\frac{1}{\sqrt{2}} \cos t+\frac{1}{\sqrt{3}} \sin t\right) \mathbf{i}+\left(-\frac{1}{\sqrt{2}} \cos t+\frac{1}{\sqrt{3}} \sin t\right) \mathbf{j} \\ &+\left(\frac{1}{\sqrt{3}} \sin t\right) \mathbf{k} \end{aligned}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.