Chapter 12: Problem 60
Describe with a sketch the sets of points \((x, y, z)\) satisfying the following equations. $$y-z=0$$
Chapter 12: Problem 60
Describe with a sketch the sets of points \((x, y, z)\) satisfying the following equations. $$y-z=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the lines $$\begin{aligned} \mathbf{r}(t) &=\langle 2+2 t, 8+t, 10+3 t\rangle \text { and } \\ \mathbf{R}(s) &=\langle 6+s, 10-2 s, 16-s\rangle. \end{aligned}$$ a. Determine whether the lines intersect (have a common point) and if so, find the coordinates of that point. b. If \(\mathbf{r}\) and \(\mathbf{R}\) describe the paths of two particles, do the particles collide? Assume \(t \geq 0\) and \(s \approx 0\) measure time in seconds, and that motion starts at \(s=t=0\).
Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\), and \(\mathbf{w}=\) \(\left\langle w_{1}, w_{2}, w_{3}\right\rangle\). Let \(c\) be a scalar. Prove the following vector properties. \(\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}\)
An object moves along a straight line from the point \(P(1,2,4)\) to the point \(Q(-6,8,10)\) a. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with a constant speed over the time interval [0,5] b. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with speed \(e^{t}\)
Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\), and \(\mathbf{w}=\) \(\left\langle w_{1}, w_{2}, w_{3}\right\rangle\). Let \(c\) be a scalar. Prove the following vector properties. \(\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}\)
Evaluate the following limits. $$\lim _{t \rightarrow \ln 2}\left(2 e^{t} \mathbf{i}+6 e^{-t} \mathbf{j}-4 e^{-2 t} \mathbf{k}\right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.