Chapter 12: Problem 59
Find all vectors \(\mathbf{u}\) that satisfy the equation $$ \langle 1,1,1\rangle \times \mathbf{u}=\langle-1,-1,2\rangle $$
Chapter 12: Problem 59
Find all vectors \(\mathbf{u}\) that satisfy the equation $$ \langle 1,1,1\rangle \times \mathbf{u}=\langle-1,-1,2\rangle $$
All the tools & learning materials you need for study success - in one app.
Get started for freeAn object moves along a straight line from the point \(P(1,2,4)\) to the point \(Q(-6,8,10)\) a. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with a constant speed over the time interval [0,5] b. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with speed \(e^{t}\)
Prove that for integers \(m\) and \(n\), the curve $$\mathbf{r}(t)=\langle a \sin m t \cos n t, b \sin m t \sin n t, c \cos m t\rangle$$ lies on the surface of a sphere provided \(a^{2}+b^{2}=c^{2}\).
Find the points (if they exist) at which the following planes and curves intersect. $$y=1 ; \mathbf{r}(t)=\langle 10 \cos t, 2 \sin t, 1\rangle, \text { for } 0 \leq t \leq 2 \pi$$
Find the point (if it exists) at which the following planes and lines intersect. $$z=4 ; \mathbf{r}(t)=\langle 2 t+1,-t+4, t-6\rangle$$
For constants \(a, b, c,\) and \(d,\) show that the equation $$x^{2}+y^{2}+z^{2}-2 a x-2 b y-2 c z=d$$ describes a sphere centered at \((a, b, c)\) with radius \(r,\) where \(r^{2}=d+a^{2}+b^{2}+c^{2},\) provided \(d+a^{2}+b^{2}+c^{2}>0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.