Chapter 12: Problem 59
Describe with a sketch the sets of points \((x, y, z)\) satisfying the following equations. $$x^{2} y^{2} z^{2}>0$$
Chapter 12: Problem 59
Describe with a sketch the sets of points \((x, y, z)\) satisfying the following equations. $$x^{2} y^{2} z^{2}>0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeImagine three unit spheres (radius equal to 1 ) with centers at \(O(0,0,0), P(\sqrt{3},-1,0)\) and \(Q(\sqrt{3}, 1,0) .\) Now place another unit sphere symmetrically on top of these spheres with its center at \(R\) (see figure). a. Find the coordinates of \(R\). (Hint: The distance between the centers of any two spheres is 2.) b. Let \(\mathbf{r}_{i j}\) be the vector from the center of sphere \(i\) to the center of sphere \(j .\) Find \(\mathbf{r}_{O P}, \mathbf{r}_{O Q}, \mathbf{r}_{P Q}, \mathbf{r}_{O R},\) and \(\mathbf{r}_{P R}\).
Determine whether the following statements are true and give an explanation or counterexample. a. The line \(\mathbf{r}(t)=\langle 3,-1,4\rangle+t\langle 6,-2,8\rangle\) passes through the origin. b. Any two nonparallel lines in \(\mathbb{R}^{3}\) intersect. c. The curve \(\mathbf{r}(t)=\left\langle e^{-t}, \sin t,-\cos t\right\rangle\) approaches a circle as \(t \rightarrow \infty\). d. If \(\mathbf{r}(t)=e^{-t^{2}}\langle 1,1,1\rangle\) then \(\lim _{t \rightarrow \infty} \mathbf{r}(t)=\lim _{t \rightarrow-\infty} \mathbf{r}(t)\).
Parabolic trajectory In Example 7 it was shown that for the parabolic trajectory \(\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle, \mathbf{a}=\langle 0,2\rangle\) and \(\mathbf{a}=\frac{2}{\sqrt{1+4 t^{2}}}(\mathbf{N}+2 t \mathbf{T}) .\) Show that the second expression for \(\mathbf{a}\) reduces to the first expression.
For the given points \(P, Q,\) and \(R,\) find the approximate measurements of the angles of \(\triangle P Q R\). $$P(0,-1,3), Q(2,2,1), R(-2,2,4)$$
In contrast to the proof in Exercise \(81,\) we now use coordinates and position vectors to prove the same result. Without loss of generality, let \(P\left(x_{1}, y_{1}, 0\right)\) and \(Q\left(x_{2}, y_{2}, 0\right)\) be two points in the \(x y\) -plane and let \(R\left(x_{3}, y_{3}, z_{3}\right)\) be a third point, such that \(P, Q,\) and \(R\) do not lie on a line. Consider \(\triangle P Q R\). a. Let \(M_{1}\) be the midpoint of the side \(P Q\). Find the coordinates of \(M_{1}\) and the components of the vector \(\overrightarrow{R M}_{1}\) b. Find the vector \(\overrightarrow{O Z}_{1}\) from the origin to the point \(Z_{1}\) two-thirds of the way along \(\overrightarrow{R M}_{1}\). c. Repeat the calculation of part (b) with the midpoint \(M_{2}\) of \(R Q\) and the vector \(\overrightarrow{P M}_{2}\) to obtain the vector \(\overrightarrow{O Z}_{2}\) d. Repeat the calculation of part (b) with the midpoint \(M_{3}\) of \(P R\) and the vector \(\overline{Q M}_{3}\) to obtain the vector \(\overrightarrow{O Z}_{3}\) e. Conclude that the medians of \(\triangle P Q R\) intersect at a point. Give the coordinates of the point. f. With \(P(2,4,0), Q(4,1,0),\) and \(R(6,3,4),\) find the point at which the medians of \(\triangle P Q R\) intersect.
What do you think about this solution?
We value your feedback to improve our textbook solutions.