Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Under what conditions is \(\mathbf{u} \times \mathbf{v}\) a unit vector?

Short Answer

Expert verified
Answer: The cross product of two vectors will result in a unit vector when the product of the magnitudes of the vectors and the sine of the angle between them is equal to 1, i.e., \(|\mathbf{u}| \cdot |\mathbf{v}| \cdot \sin{(\theta)} = 1\).

Step by step solution

01

Define the cross product

The cross product of two vectors \(\mathbf{u}\) and \(\mathbf{v}\) is a vector \(\mathbf{w}\) where: \(\mathbf{w} = \mathbf{u} \times \mathbf{v}\). The magnitude of the cross product is given by: \(|\mathbf{w}| = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \sin{(\theta)}\), where \(|\mathbf{u}|\) and \(|\mathbf{v}|\) are the magnitudes of vectors \(\mathbf{u}\) and \(\mathbf{v}\), and \(\theta\) is the angle between them.
02

Find the condition for a unit vector

A unit vector is a vector with a magnitude of 1. So, to find the condition under which the cross product of \(\mathbf{u}\) and \(\mathbf{v}\) is a unit vector, we need to find when \(|\mathbf{w}| = 1\). Using the formula for the magnitude of the cross product, we get: \(1 = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \sin{(\theta)}\).
03

Obtain the condition

To satisfy the equation \(1 = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \sin{(\theta)}\), we need the following condition to hold true: \(|\mathbf{u}| \cdot |\mathbf{v}| \cdot \sin{(\theta)} = 1\). In summary, under the condition that the product of the magnitudes of the vectors \(\mathbf{u}\) and \(\mathbf{v}\) and the sine of the angle between them (\(\theta\)) is equal to 1, the cross product of the vectors \(\mathbf{u}\) and \(\mathbf{v}\) will result in a unit vector.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An object moves along an ellipse given by the function \(\mathbf{r}(t)=\langle a \cos t, b \sin t\rangle,\) for \(0 \leq t \leq 2 \pi,\) where \(a > 0\) and \(b > 0\) a. Find the velocity and speed of the object in terms of \(a\) and \(b\) for \(0 \leq t \leq 2 \pi\) b. With \(a=1\) and \(b=6,\) graph the speed function, for \(0 \leq t \leq 2 \pi .\) Mark the points on the trajectory at which the speed is a minimum and a maximum. c. Is it true that the object speeds up along the flattest (straightest) parts of the trajectory and slows down where the curves are sharpest? d. For general \(a\) and \(b\), find the ratio of the maximum speed to the minimum speed on the ellipse (in terms of \(a\) and \(b\) ).

Suppose water flows in a thin sheet over the \(x y\) -plane with a uniform velocity given by the vector \(\mathbf{v}=\langle 1,2\rangle ;\) this means that at all points of the plane, the velocity of the water has components \(1 \mathrm{m} / \mathrm{s}\) in the \(x\) -direction and \(2 \mathrm{m} / \mathrm{s}\) in the \(y\) -direction (see figure). Let \(C\) be an imaginary unit circle (that does not interfere with the flow). a. Show that at the point \((x, y)\) on the circle \(C\) the outwardpointing unit vector normal to \(C\) is \(\mathbf{n}=\langle x, y\rangle\) b. Show that at the point \((\cos \theta, \sin \theta)\) on the circle \(C\) the outward-pointing unit vector normal to \(C\) is also $$ \mathbf{n}=\langle\cos \theta, \sin \theta\rangle $$ c. Find all points on \(C\) at which the velocity is normal to \(C\). d. Find all points on \(C\) at which the velocity is tangential to \(C\). e. At each point on \(C\) find the component of \(v\) normal to \(C\) Express the answer as a function of \((x, y)\) and as a function of \(\theta\) f. What is the net flow through the circle? That is, does water accumulate inside the circle?

Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\), and \(\mathbf{w}=\) \(\left\langle w_{1}, w_{2}, w_{3}\right\rangle\). Let \(c\) be a scalar. Prove the following vector properties. \(\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}\)

A pair of lines in \(\mathbb{R}^{3}\) are said to be skew if they are neither parallel nor intersecting. Determine whether the following pairs of lines are parallel, intersecting, or skew. If the lines intersect. determine the point(s) of intersection. $$\begin{aligned} &\mathbf{r}(t)=\langle 3+4 t, 1-6 t, 4 t\rangle;\\\ &\mathbf{R}(s)=\langle-2 s, 5+3 s, 4-2 s\rangle \end{aligned}$$

Consider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and fare real numbers. It can be shown that this curve lies in a plane. Graph the following curve and describe it. $$\begin{aligned} \mathbf{r}(t)=&(2 \cos t+2 \sin t) \mathbf{i}+(-\cos t+2 \sin t) \mathbf{j} \\\ &+(\cos t-2 \sin t) \mathbf{k} \end{aligned}$$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free