Chapter 12: Problem 51
Use cross products to determine whether the points \(A, B,\) and C are collinear. $$A(-3,-2,1), B(1,4,7), \text { and } C(4,10,14)$$
Chapter 12: Problem 51
Use cross products to determine whether the points \(A, B,\) and C are collinear. $$A(-3,-2,1), B(1,4,7), \text { and } C(4,10,14)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathbf{v}=\langle a, b, c\rangle\) and let \(\alpha, \beta\) and \(\gamma\) be the angles between \(\mathbf{v}\) and the positive \(x\) -axis, the positive \(y\) -axis, and the positive \(z\) -axis, respectively (see figure). a. Prove that \(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\) b. Find a vector that makes a \(45^{\circ}\) angle with i and \(\mathbf{j}\). What angle does it make with k? c. Find a vector that makes a \(60^{\circ}\) angle with i and \(\mathbf{j}\). What angle does it make with k? d. Is there a vector that makes a \(30^{\circ}\) angle with i and \(\mathbf{j}\) ? Explain. e. Find a vector \(\mathbf{v}\) such that \(\alpha=\beta=\gamma .\) What is the angle?
For the following vectors u and \(\mathbf{v}\) express u as the sum \(\mathbf{u}=\mathbf{p}+\mathbf{n},\) where \(\mathbf{p}\) is parallel to \(\mathbf{v}\) and \(\mathbf{n}\) is orthogonal to \(\mathbf{v}\). \(\mathbf{u}=\langle-2,2\rangle, \mathbf{v}=\langle 2,1\rangle\)
Carry out the following steps to determine the (smallest) distance between the point \(P\) and the line \(\ell\) through the origin. a. Find any vector \(\mathbf{v}\) in the direction of \(\ell\) b. Find the position vector u corresponding to \(P\). c. Find \(\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). d. Show that \(\mathbf{w}=\mathbf{u}-\) projy \(\mathbf{u}\) is a vector orthogonal to \(\mathbf{v}\) whose length is the distance between \(P\) and the line \(\ell\) e. Find \(\mathbf{w}\) and \(|\mathbf{w}| .\) Explain why \(|\mathbf{w}|\) is the distance between \(P\) and \(\ell\). \(P(1,1,-1) ; \ell\) has the direction of $$\langle-6,8,3\rangle$$.
For the following vectors u and \(\mathbf{v}\) express u as the sum \(\mathbf{u}=\mathbf{p}+\mathbf{n},\) where \(\mathbf{p}\) is parallel to \(\mathbf{v}\) and \(\mathbf{n}\) is orthogonal to \(\mathbf{v}\). \(\mathbf{u}=\langle-1,2,3\rangle, \mathbf{v}=\langle 2,1,1\rangle\)
For constants \(a, b, c,\) and \(d,\) show that the equation $$x^{2}+y^{2}+z^{2}-2 a x-2 b y-2 c z=d$$ describes a sphere centered at \((a, b, c)\) with radius \(r,\) where \(r^{2}=d+a^{2}+b^{2}+c^{2},\) provided \(d+a^{2}+b^{2}+c^{2}>0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.