Chapter 12: Problem 51
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=e^{3 t} \mathbf{i}+\frac{1}{1+t^{2}} \mathbf{j}-\frac{1}{\sqrt{2 t}} \mathbf{k}$$
Chapter 12: Problem 51
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=e^{3 t} \mathbf{i}+\frac{1}{1+t^{2}} \mathbf{j}-\frac{1}{\sqrt{2 t}} \mathbf{k}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the parallelogram with adjacent sides \(\mathbf{u}\) and \(\mathbf{v}\). a. Show that the diagonals of the parallelogram are \(\mathbf{u}+\mathbf{v}\) and \(\mathbf{u}-\mathbf{v}\). b. Prove that the diagonals have the same length if and only if \(\mathbf{u} \cdot \mathbf{v}=0\). c. Show that the sum of the squares of the lengths of the diagonals equals the sum of the squares of the lengths of the sides.
Find the domains of the following vector-valued functions. $$\mathbf{r}(t)=\sqrt{4-t^{2}} \mathbf{i}+\sqrt{t} \mathbf{j}-\frac{2}{\sqrt{1+t}} \mathbf{k}$$
An object moves on the helix \(\langle\cos t, \sin t, t\rangle,\) for \(t \geq 0\) a. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with a constant speed of \(10 .\) b. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with speed \(t\)
Carry out the following steps to determine the (smallest) distance between the point \(P\) and the line \(\ell\) through the origin. a. Find any vector \(\mathbf{v}\) in the direction of \(\ell\) b. Find the position vector u corresponding to \(P\). c. Find \(\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). d. Show that \(\mathbf{w}=\mathbf{u}-\) projy \(\mathbf{u}\) is a vector orthogonal to \(\mathbf{v}\) whose length is the distance between \(P\) and the line \(\ell\) e. Find \(\mathbf{w}\) and \(|\mathbf{w}| .\) Explain why \(|\mathbf{w}|\) is the distance between \(P\) and \(\ell\). \(P(-12,4) ; \ell: y=2 x\)
Imagine three unit spheres (radius equal to 1 ) with centers at \(O(0,0,0), P(\sqrt{3},-1,0)\) and \(Q(\sqrt{3}, 1,0) .\) Now place another unit sphere symmetrically on top of these spheres with its center at \(R\) (see figure). a. Find the coordinates of \(R\). (Hint: The distance between the centers of any two spheres is 2.) b. Let \(\mathbf{r}_{i j}\) be the vector from the center of sphere \(i\) to the center of sphere \(j .\) Find \(\mathbf{r}_{O P}, \mathbf{r}_{O Q}, \mathbf{r}_{P Q}, \mathbf{r}_{O R},\) and \(\mathbf{r}_{P R}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.