Chapter 12: Problem 50
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=t e^{t} \mathbf{i}+t \sin t^{2} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k}$$
Chapter 12: Problem 50
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=t e^{t} \mathbf{i}+t \sin t^{2} \mathbf{j}-\frac{2 t}{\sqrt{t^{2}+4}} \mathbf{k}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\), and \(\mathbf{w}=\) \(\left\langle w_{1}, w_{2}, w_{3}\right\rangle\). Let \(c\) be a scalar. Prove the following vector properties. \(\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}\)
Determine whether the following statements are true and give an explanation or counterexample. a. The line \(\mathbf{r}(t)=\langle 3,-1,4\rangle+t\langle 6,-2,8\rangle\) passes through the origin. b. Any two nonparallel lines in \(\mathbb{R}^{3}\) intersect. c. The curve \(\mathbf{r}(t)=\left\langle e^{-t}, \sin t,-\cos t\right\rangle\) approaches a circle as \(t \rightarrow \infty\). d. If \(\mathbf{r}(t)=e^{-t^{2}}\langle 1,1,1\rangle\) then \(\lim _{t \rightarrow \infty} \mathbf{r}(t)=\lim _{t \rightarrow-\infty} \mathbf{r}(t)\).
An object moves along a straight line from the point \(P(1,2,4)\) to the point \(Q(-6,8,10)\) a. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with a constant speed over the time interval [0,5] b. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with speed \(e^{t}\)
For the given points \(P, Q,\) and \(R,\) find the approximate measurements of the angles of \(\triangle P Q R\). $$P(0,-1,3), Q(2,2,1), R(-2,2,4)$$
Suppose water flows in a thin sheet over the \(x y\) -plane with a uniform velocity given by the vector \(\mathbf{v}=\langle 1,2\rangle ;\) this means that at all points of the plane, the velocity of the water has components \(1 \mathrm{m} / \mathrm{s}\) in the \(x\) -direction and \(2 \mathrm{m} / \mathrm{s}\) in the \(y\) -direction (see figure). Let \(C\) be an imaginary unit circle (that does not interfere with the flow). a. Show that at the point \((x, y)\) on the circle \(C\) the outwardpointing unit vector normal to \(C\) is \(\mathbf{n}=\langle x, y\rangle\) b. Show that at the point \((\cos \theta, \sin \theta)\) on the circle \(C\) the outward-pointing unit vector normal to \(C\) is also $$ \mathbf{n}=\langle\cos \theta, \sin \theta\rangle $$ c. Find all points on \(C\) at which the velocity is normal to \(C\). d. Find all points on \(C\) at which the velocity is tangential to \(C\). e. At each point on \(C\) find the component of \(v\) normal to \(C\) Express the answer as a function of \((x, y)\) and as a function of \(\theta\) f. What is the net flow through the circle? That is, does water accumulate inside the circle?
What do you think about this solution?
We value your feedback to improve our textbook solutions.