Chapter 12: Problem 43
Evaluate the following limits. $$\lim _{t \rightarrow \infty}\left(e^{-t} \mathbf{i}-\frac{2 t}{t+1} \mathbf{j}+\tan ^{-1} t \mathbf{k}\right)$$
Chapter 12: Problem 43
Evaluate the following limits. $$\lim _{t \rightarrow \infty}\left(e^{-t} \mathbf{i}-\frac{2 t}{t+1} \mathbf{j}+\tan ^{-1} t \mathbf{k}\right)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven a fixed vector \(\mathbf{v},\) there is an infinite set of vectors \(\mathbf{u}\) with the same value of proj\(_{\mathbf{v}} \mathbf{u}\). Find another vector that has the same projection onto \(\mathbf{v}=\langle 1,1,1\rangle\) as \(\mathbf{u}=\langle 1,2,3\rangle\).
The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|(\text {because}|\cos \theta| \leq 1) .\) This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Use the vectors \(\mathbf{u}=\langle\sqrt{a}, \sqrt{b}\rangle\) and \(\mathbf{v}=\langle\sqrt{b}, \sqrt{a}\rangle\) to show that \(\sqrt{a b} \leq(a+b) / 2,\) where \(a \geq 0\) and \(b \geq 0\).
For the following vectors u and \(\mathbf{v}\) express u as the sum \(\mathbf{u}=\mathbf{p}+\mathbf{n},\) where \(\mathbf{p}\) is parallel to \(\mathbf{v}\) and \(\mathbf{n}\) is orthogonal to \(\mathbf{v}\). \(\mathbf{u}=\langle-2,2\rangle, \mathbf{v}=\langle 2,1\rangle\)
A pair of lines in \(\mathbb{R}^{3}\) are said to be skew if they are neither parallel nor intersecting. Determine whether the following pairs of lines are parallel, intersecting, or skew. If the lines intersect. determine the point(s) of intersection. $$\begin{array}{l} \mathbf{r}(t)=\langle 4+t,-2 t, 1+3 t\rangle ;\\\ \mathbf{R}(s)=\langle 1-7 s, 6+14 s, 4-21 s\rangle \end{array}$$
Evaluate the following limits. $$\lim _{t \rightarrow \pi / 2}\left(\cos 2 t \mathbf{i}-4 \sin t \mathbf{j}+\frac{2 t}{\pi} \mathbf{k}\right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.