Chapter 12: Problem 42
Evaluate the following limits. $$\lim _{t \rightarrow \ln 2}\left(2 e^{t} \mathbf{i}+6 e^{-t} \mathbf{j}-4 e^{-2 t} \mathbf{k}\right)$$
Chapter 12: Problem 42
Evaluate the following limits. $$\lim _{t \rightarrow \ln 2}\left(2 e^{t} \mathbf{i}+6 e^{-t} \mathbf{j}-4 e^{-2 t} \mathbf{k}\right)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeA pair of lines in \(\mathbb{R}^{3}\) are said to be skew if they are neither parallel nor intersecting. Determine whether the following pairs of lines are parallel, intersecting, or skew. If the lines intersect. determine the point(s) of intersection. $$\begin{aligned} &\mathbf{r}(t)=\langle 1+6 t, 3-7 t, 2+t\rangle;\\\ &\mathbf{R}(s)=\langle 10+3 s, 6+s, 14+4 s\rangle \end{aligned}$$
Carry out the following steps to determine the (smallest) distance between the point \(P\) and the line \(\ell\) through the origin. a. Find any vector \(\mathbf{v}\) in the direction of \(\ell\) b. Find the position vector u corresponding to \(P\). c. Find \(\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). d. Show that \(\mathbf{w}=\mathbf{u}-\) projy \(\mathbf{u}\) is a vector orthogonal to \(\mathbf{v}\) whose length is the distance between \(P\) and the line \(\ell\) e. Find \(\mathbf{w}\) and \(|\mathbf{w}| .\) Explain why \(|\mathbf{w}|\) is the distance between \(P\) and \(\ell\). \(P(1,1,-1) ; \ell\) has the direction of $$\langle-6,8,3\rangle$$.
An object moves on the helix \(\langle\cos t, \sin t, t\rangle,\) for \(t \geq 0\) a. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with a constant speed of \(10 .\) b. Find a position function \(\mathbf{r}\) that describes the motion if it occurs with speed \(t\)
Evaluate the following limits. $$\lim _{t \rightarrow 2}\left(\frac{t}{t^{2}+1} \mathbf{i}-4 e^{-t} \sin \pi t \mathbf{j}+\frac{1}{\sqrt{4 t+1}} \mathbf{k}\right)$$
In contrast to the proof in Exercise \(81,\) we now use coordinates and position vectors to prove the same result. Without loss of generality, let \(P\left(x_{1}, y_{1}, 0\right)\) and \(Q\left(x_{2}, y_{2}, 0\right)\) be two points in the \(x y\) -plane and let \(R\left(x_{3}, y_{3}, z_{3}\right)\) be a third point, such that \(P, Q,\) and \(R\) do not lie on a line. Consider \(\triangle P Q R\). a. Let \(M_{1}\) be the midpoint of the side \(P Q\). Find the coordinates of \(M_{1}\) and the components of the vector \(\overrightarrow{R M}_{1}\) b. Find the vector \(\overrightarrow{O Z}_{1}\) from the origin to the point \(Z_{1}\) two-thirds of the way along \(\overrightarrow{R M}_{1}\). c. Repeat the calculation of part (b) with the midpoint \(M_{2}\) of \(R Q\) and the vector \(\overrightarrow{P M}_{2}\) to obtain the vector \(\overrightarrow{O Z}_{2}\) d. Repeat the calculation of part (b) with the midpoint \(M_{3}\) of \(P R\) and the vector \(\overline{Q M}_{3}\) to obtain the vector \(\overrightarrow{O Z}_{3}\) e. Conclude that the medians of \(\triangle P Q R\) intersect at a point. Give the coordinates of the point. f. With \(P(2,4,0), Q(4,1,0),\) and \(R(6,3,4),\) find the point at which the medians of \(\triangle P Q R\) intersect.
What do you think about this solution?
We value your feedback to improve our textbook solutions.