Chapter 12: Problem 41
Evaluate the following limits. $$\lim _{t \rightarrow \pi / 2}\left(\cos 2 t \mathbf{i}-4 \sin t \mathbf{j}+\frac{2 t}{\pi} \mathbf{k}\right)$$
Chapter 12: Problem 41
Evaluate the following limits. $$\lim _{t \rightarrow \pi / 2}\left(\cos 2 t \mathbf{i}-4 \sin t \mathbf{j}+\frac{2 t}{\pi} \mathbf{k}\right)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFor the given points \(P, Q,\) and \(R,\) find the approximate measurements of the angles of \(\triangle P Q R\). $$P(1,-4), Q(2,7), R(-2,2)$$
In contrast to the proof in Exercise \(81,\) we now use coordinates and position vectors to prove the same result. Without loss of generality, let \(P\left(x_{1}, y_{1}, 0\right)\) and \(Q\left(x_{2}, y_{2}, 0\right)\) be two points in the \(x y\) -plane and let \(R\left(x_{3}, y_{3}, z_{3}\right)\) be a third point, such that \(P, Q,\) and \(R\) do not lie on a line. Consider \(\triangle P Q R\). a. Let \(M_{1}\) be the midpoint of the side \(P Q\). Find the coordinates of \(M_{1}\) and the components of the vector \(\overrightarrow{R M}_{1}\) b. Find the vector \(\overrightarrow{O Z}_{1}\) from the origin to the point \(Z_{1}\) two-thirds of the way along \(\overrightarrow{R M}_{1}\). c. Repeat the calculation of part (b) with the midpoint \(M_{2}\) of \(R Q\) and the vector \(\overrightarrow{P M}_{2}\) to obtain the vector \(\overrightarrow{O Z}_{2}\) d. Repeat the calculation of part (b) with the midpoint \(M_{3}\) of \(P R\) and the vector \(\overline{Q M}_{3}\) to obtain the vector \(\overrightarrow{O Z}_{3}\) e. Conclude that the medians of \(\triangle P Q R\) intersect at a point. Give the coordinates of the point. f. With \(P(2,4,0), Q(4,1,0),\) and \(R(6,3,4),\) find the point at which the medians of \(\triangle P Q R\) intersect.
Evaluate the following limits. $$\lim _{t \rightarrow 2}\left(\frac{t}{t^{2}+1} \mathbf{i}-4 e^{-t} \sin \pi t \mathbf{j}+\frac{1}{\sqrt{4 t+1}} \mathbf{k}\right)$$
Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle\), and \(\mathbf{w}=\) \(\left\langle w_{1}, w_{2}, w_{3}\right\rangle\). Let \(c\) be a scalar. Prove the following vector properties. \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\)
A pair of lines in \(\mathbb{R}^{3}\) are said to be skew if they are neither parallel nor intersecting. Determine whether the following pairs of lines are parallel, intersecting, or skew. If the lines intersect. determine the point(s) of intersection. $$\begin{array}{l} \mathbf{r}(t)=\langle 4+5 t,-2 t, 1+3 t\rangle ;\\\ \mathbf{R}(s)=\langle 10 s, 6+4 s, 4+6 s\rangle \end{array}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.