Chapter 12: Problem 40
Calculate the work done in the following situations. A constant force \(\mathbf{F}=\langle 4,3,2\rangle\) (in newtons) moves an object from (0,0,0) to \((8,6,0) .\) (Distance is measured in meters.)
Chapter 12: Problem 40
Calculate the work done in the following situations. A constant force \(\mathbf{F}=\langle 4,3,2\rangle\) (in newtons) moves an object from (0,0,0) to \((8,6,0) .\) (Distance is measured in meters.)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and fare real numbers. It can be shown that this curve lies in a plane. Graph the following curve and describe it. $$\begin{aligned} \mathbf{r}(t)=&(2 \cos t+2 \sin t) \mathbf{i}+(-\cos t+2 \sin t) \mathbf{j} \\\ &+(\cos t-2 \sin t) \mathbf{k} \end{aligned}$$
Trajectory with a sloped landing Assume an object is launched from the origin with an initial speed \(\left|\mathbf{v}_{0}\right|\) at an angle \(\alpha\) to the horizontal, where \(0 < \alpha < \frac{\pi}{2}\) a. Find the time of flight, range, and maximum height (relative to the launch point) of the trajectory if the ground slopes downward at a constant angle of \(\theta\) from the launch site, where \(0 < \theta < \frac{\pi}{2}\) b. Find the time of flight, range, and maximum height of the trajectory if the ground slopes upward at a constant angle of \(\theta\) from the launch site.
Suppose an object moves on the surface of a sphere with \(|\mathbf{r}(t)|\) constant for all \(t\) Show that \(\mathbf{r}(t)\) and \(\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)\) satisfy \(\mathbf{r}(t) \cdot \mathbf{a}(t)=-|\mathbf{v}(t)|^{2}\)
Given a fixed vector \(\mathbf{v},\) there is an infinite set of vectors \(\mathbf{u}\) with the same value of proj\(_{\mathbf{v}} \mathbf{u}\). Let \(\mathbf{v}=\langle 0,0,1\rangle .\) Give a description of all position vectors \(\mathbf{u}\) such that \(\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\operatorname{proj}_{\mathbf{v}}\langle 1,2,3\rangle\).
A pair of lines in \(\mathbb{R}^{3}\) are said to be skew if they are neither parallel nor intersecting. Determine whether the following pairs of lines are parallel, intersecting, or skew. If the lines intersect. determine the point(s) of intersection. $$\begin{array}{l} \mathbf{r}(t)=\langle 4+5 t,-2 t, 1+3 t\rangle ;\\\ \mathbf{R}(s)=\langle 10 s, 6+4 s, 4+6 s\rangle \end{array}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.