Chapter 11: Problem 89
Suppose that two hyperbolas with eccentricities \(e\) and \(E\) have perpendicular major axes and share a set of asymptotes. Show that \(e^{-2}+E^{-2}=1\)
Chapter 11: Problem 89
Suppose that two hyperbolas with eccentricities \(e\) and \(E\) have perpendicular major axes and share a set of asymptotes. Show that \(e^{-2}+E^{-2}=1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind a polar equation for each conic section. Assume one focus is at the origin.
The region bounded by the parabola \(y=a x^{2}\) and the horizontal line \(y=h\) is revolved about the \(y\) -axis to generate a solid bounded by a surface called a paraboloid (where \(a > 0\) and \(h > 0\) ). Show that the volume of the solid is \(\frac{3}{2}\) the volume of the cone with the same base and vertex.
Find the equation in Cartesian coordinates of the lemniscate \(r^{2}=a^{2} \cos 2 \theta,\) where \(a\) is a real number.
Graph the following equations. Then use arrows and labeled points to indicate how the curve is generated as \(\theta\) increases from 0 to \(2 \pi\). $$r=\frac{3}{1-\cos \theta}$$
Points at which the graphs of \(r=f(\theta)\) and \(r=g(\theta)\) intersect must be determined carefully. Solving \(f(\theta)=g(\theta)\) identifies some-but perhaps not all-intersection points. The reason is that the curves may pass through the same point for different values of \(\theta .\) Use analytical methods and a graphing utility to find all the intersection points of the following curves. $$r=1-\sin \theta \text { and } r=1+\cos \theta$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.