Chapter 11: Problem 66
Use a graphing utility to graph the hyperbolas \(r=\frac{e}{1+e \cos \theta},\) for \(e=1.1,1.3,1.5,1.7\) and 2 on the same set of axes. Explain how the shapes of the curves vary as \(e\) changes.
Chapter 11: Problem 66
Use a graphing utility to graph the hyperbolas \(r=\frac{e}{1+e \cos \theta},\) for \(e=1.1,1.3,1.5,1.7\) and 2 on the same set of axes. Explain how the shapes of the curves vary as \(e\) changes.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind an equation of the following ellipses, assuming the center is at the origin. Sketch a graph labeling the vertices and foci. An ellipse whose major axis is on the \(x\) -axis with length 8 and whose minor axis has length 6
Find the equation in Cartesian coordinates of the lemniscate \(r^{2}=a^{2} \cos 2 \theta,\) where \(a\) is a real number.
Find an equation of the following parabolas, assuming the vertex is at the origin. A parabola with focus at (-4,0)
Sketch the graph of the following parabolas. Specify the location of the focus and the equation of the directrix. Use a graphing utility to check your work. $$x=-y^{2} / 16$$
Show that the vertical distance between a hyperbola \(x^{2} / a^{2}-y^{2} / b^{2}=1\) and its asymptote \(y=b x / a\) approaches zero as \(x \rightarrow \infty,\) where \(0 < b < a\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.