Chapter 11: Problem 65
Use a graphing utility to graph the parabolas \(y^{2}=4 p x,\) for \(p=-5,-2,-1,1,2,\) and 5 on the same set of axes. Explain how the shapes of the curves vary as \(p\) changes.
Chapter 11: Problem 65
Use a graphing utility to graph the parabolas \(y^{2}=4 p x,\) for \(p=-5,-2,-1,1,2,\) and 5 on the same set of axes. Explain how the shapes of the curves vary as \(p\) changes.
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven vertices \((\pm a, 0)\) and eccentricity \(e,\) what are the coordinates of the foci of an ellipse and a hyperbola?
Suppose that two hyperbolas with eccentricities \(e\) and \(E\) have perpendicular major axes and share a set of asymptotes. Show that \(e^{-2}+E^{-2}=1\)
Find an equation of the following parabolas, assuming the vertex is at the origin. A parabola symmetric about the \(y\) -axis that passes through the point (2,-6)
Suppose two circles, whose centers are at least \(2 a\) units apart (see figure), are centered at \(F_{1}\) and \(F_{2},\) respectively. The radius of one circle is \(2 a+r\) and the radius of the other circle is \(r,\) where \(r \geq 0 .\) Show that as \(r\) increases, the intersection point \(P\) of the two circles describes one branch of a hyperbola with foci at \(F_{1}\) and \(F_{2}\)
Let \(H\) be the right branch of the hyperbola \(x^{2}-y^{2}=1\) and let \(\ell\) be
the line \(y=m(x-2)\) that passes through the point (2,0) with slope \(m,\) where
\(-\infty
What do you think about this solution?
We value your feedback to improve our textbook solutions.