Chapter 11: Problem 47
Graph the following equations. Use a graphing utility to check your work and produce a final graph. $$r=\sin 3 \theta$$
Chapter 11: Problem 47
Graph the following equations. Use a graphing utility to check your work and produce a final graph. $$r=\sin 3 \theta$$
All the tools & learning materials you need for study success - in one app.
Get started for freeA blood vessel with a circular cross section of constant radius \(R\) carries blood that flows parallel to the axis of the vessel with a velocity of \(v(r)=V\left(1-r^{2} / R^{2}\right),\) where \(V\) is a constant and \(r\) is the distance from the axis of the vessel. a. Where is the velocity a maximum? A minimum? b. Find the average velocity of the blood over a cross section of the vessel. c. Suppose the velocity in the vessel is given by \(v(r)=V\left(1-r^{2} / R^{2}\right)^{1 / p},\) where \(p \geq 1 .\) Graph the velocity profiles for \(p=1,2,\) and 6 on the interval \(0 \leq r \leq R .\) Find the average velocity in the vessel as a function of \(p .\) How does the average velocity behave as \(p \rightarrow \infty ?\)
Find an equation of the following hyperbolas, assuming the center is at the origin. Sketch a graph labeling the vertices, foci, and asymptotes. Use a graphing utility to check your work. A hyperbola with vertices (±1,0) that passes through \(\left(\frac{5}{3}, 8\right)\)
A focal chord of a conic section is a line through a focus joining two points of the curve. The latus rectum is the focal chord perpendicular to the major axis of the conic. Prove the following properties. The length of the latus rectum of an ellipse centered at the origin is \(2 b^{2} / a=2 b \sqrt{1-e^{2}}\)
Find the area of the regions bounded by the following curves. The complete three-leaf rose \(r=2 \cos 3 \theta\)
Find an equation of the line tangent to the following curves at the given point. $$r=\frac{1}{1+\sin \theta} ;\left(\frac{2}{3}, \frac{\pi}{6}\right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.