Chapter 11: Problem 4
What is the polar equation of a circle of radius \(|a|\) centered at the origin?
Chapter 11: Problem 4
What is the polar equation of a circle of radius \(|a|\) centered at the origin?
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the graph of the following hyperbolas. Specify the coordinates of the vertices and foci, and find the equations of the asymptotes. Use a graphing utility to check your work. $$4 x^{2}-y^{2}=16$$
What is the equation of the standard ellipse with vertices at \((\pm a, 0)\) and foci at \((\pm c, 0) ?\)
Find an equation of the line tangent to the following curves at the given point. $$r=\frac{1}{1+\sin \theta} ;\left(\frac{2}{3}, \frac{\pi}{6}\right)$$
Consider the parametric equations $$ x=a \cos t+b \sin t, \quad y=c \cos t+d \sin t $$ where \(a, b, c,\) and \(d\) are real numbers. a. Show that (apart from a set of special cases) the equations describe an ellipse of the form \(A x^{2}+B x y+C y^{2}=K,\) where \(A, B, C,\) and \(K\) are constants. b. Show that (apart from a set of special cases), the equations describe an ellipse with its axes aligned with the \(x\) - and \(y\) -axes provided \(a b+c d=0\) c. Show that the equations describe a circle provided \(a b+c d=0\) and \(c^{2}+d^{2}=a^{2}+b^{2} \neq 0\)
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. The hyperbola \(x^{2} / 4-y^{2} / 9=1\) has no \(y\) -intercepts. b. On every ellipse, there are exactly two points at which the curve has slope \(s,\) where \(s\) is any real number. c. Given the directrices and foci of a standard hyperbola, it is possible to find its vertices, eccentricity, and asymptotes. d. The point on a parabola closest to the focus is the vertex.
What do you think about this solution?
We value your feedback to improve our textbook solutions.