Chapter 11: Problem 22
Express the following Cartesian coordinates in polar coordinates in at least two different ways. $$(-1,0)$$
Chapter 11: Problem 22
Express the following Cartesian coordinates in polar coordinates in at least two different ways. $$(-1,0)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeWater flows in a shallow semicircular channel with inner and outer radii of \(1 \mathrm{m}\) and \(2 \mathrm{m}\) (see figure). At a point \(P(r, \theta)\) in the channel, the flow is in the tangential direction (counterclockwise along circles), and it depends only on \(r\), the distance from the center of the semicircles. a. Express the region formed by the channel as a set in polar coordinates. b. Express the inflow and outflow regions of the channel as sets in polar coordinates. c. Suppose the tangential velocity of the water in \(\mathrm{m} / \mathrm{s}\) is given by \(v(r)=10 r,\) for \(1 \leq r \leq 2 .\) Is the velocity greater at \(\left(1.5, \frac{\pi}{4}\right)\) or \(\left(1.2, \frac{3 \pi}{4}\right) ?\) Explain. d. Suppose the tangential velocity of the water is given by \(v(r)=\frac{20}{r},\) for \(1 \leq r \leq 2 .\) Is the velocity greater at \(\left(1.8, \frac{\pi}{6}\right)\) or \(\left(1.3, \frac{2 \pi}{3}\right) ?\) Explain. e. The total amount of water that flows through the channel (across a cross section of the channel \(\theta=\theta_{0}\) ) is proportional to \(\int_{1}^{2} v(r) d r .\) Is the total flow through the channel greater for the flow in part (c) or (d)?
Consider an ellipse to be the set of points in a plane whose distances from two fixed points have a constant sum 2 \(a .\) Derive the equation of an ellipse. Assume the two fixed points are on the \(x\) -axis equidistant from the origin.
Prove that the equations $$x=a \cos t+b \sin t, \quad y=c \cos t+d \sin t$$ where \(a, b, c,\) and \(d\) are real numbers, describe a circle of radius \(R\) provided \(a^{2}+c^{2}=b^{2}+d^{2}=R^{2}\) and \(a b+c d=0\)
Suppose that two hyperbolas with eccentricities \(e\) and \(E\) have perpendicular major axes and share a set of asymptotes. Show that \(e^{-2}+E^{-2}=1\)
What is the equation of the standard hyperbola with vertices at \((0, \pm a)\) and foci at \((0, \pm c) ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.