Chapter 11: Problem 111
Show that the equation \(r=a \cos \theta+b \sin \theta\) where \(a\) and \(b\) are real numbers, describes a circle. Find the center and radius of the circle.
Chapter 11: Problem 111
Show that the equation \(r=a \cos \theta+b \sin \theta\) where \(a\) and \(b\) are real numbers, describes a circle. Find the center and radius of the circle.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind an equation of the following curves, assuming the center is at the origin. Sketch a graph labeling the vertices, foci, asymptotes, and directrices. Use a graphing utility to check your work. A hyperbola with vertices (±1,0) and eccentricity 3
Use a graphing utility to graph the parabolas \(y^{2}=4 p x,\) for \(p=-5,-2,-1,1,2,\) and 5 on the same set of axes. Explain how the shapes of the curves vary as \(p\) changes.
Sketch the graph of the following parabolas. Specify the location of the focus and the equation of the directrix. Use a graphing utility to check your work. $$x^{2}=12 y$$
A focal chord of a conic section is a line through a focus joining two points of the curve. The latus rectum is the focal chord perpendicular to the major axis of the conic. Prove the following properties. The length of the latus rectum of the parabola \(y^{2}=4 p x\) or \(x^{2}=4 p y\) is \(4|p|\)
Find an equation of the following hyperbolas, assuming the center is at the origin. Sketch a graph labeling the vertices, foci, and asymptotes. Use a graphing utility to check your work. A hyperbola with vertices (±2,0) and asymptotes \(y=\pm 3 x / 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.