Chapter 11: Problem 1
Give the property that defines all parabolas.
Chapter 11: Problem 1
Give the property that defines all parabolas.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind an equation of the line tangent to the following curves at the given point. $$y^{2}-\frac{x^{2}}{64}=1 ;\left(6,-\frac{5}{4}\right)$$
Consider the following sequence of problems related to grazing goats tied to a rope. A circular concrete slab of unit radius is surrounded by grass. A goat is tied to the edge of the slab with a rope of length \(0 \leq a \leq 2\) (see figure). What is the area of the grassy region that the goat can graze? Note that the rope can extend over the concrete slab. Check your answer with the special cases \(a=0\) and \(a=2\)
Find an equation of the line tangent to the following curves at the given point. $$r=\frac{1}{1+\sin \theta} ;\left(\frac{2}{3}, \frac{\pi}{6}\right)$$
Find an equation of the following hyperbolas, assuming the center is at the origin. Sketch a graph labeling the vertices, foci, and asymptotes. Use a graphing utility to check your work. A hyperbola with vertices (±4,0) and foci (±6,0)
Graph the following conic sections, labeling the vertices, foci, directrices, and asymptotes (if they exist). Use a graphing utility to check your work. $$r=\frac{1}{2-2 \sin \theta}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.