Chapter 10: Problem 62
Identify the functions represented by the following power series. $$\sum_{k=1}^{\infty} \frac{x^{2 k}}{k}$$
Chapter 10: Problem 62
Identify the functions represented by the following power series. $$\sum_{k=1}^{\infty} \frac{x^{2 k}}{k}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a Taylor series to approximate the following definite integrals. Retain as many terms as needed to ensure the error is less than \(10^{-4}\). $$\int_{0}^{0.4} \ln \left(1+x^{2}\right) d x$$
Use properties of power series, substitution, and factoring of constants to find the first four nonzero terms of the Taylor series centered at 0 for the following functions. Use the Taylor series. $$(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\cdots, \text { for }-1 < x < 1$$ $$\frac{1}{\left(1+4 x^{2}\right)^{2}}$$
Errors in approximations Suppose you approximate \(\sin x\) at the points \(x=-0.2,-0.1,0.0,0.1,\) and 0.2 using the Taylor polynomials \(p_{3}=x-x^{3} / 6\) and \(p_{5}=x-x^{3} / 6+x^{5} / 120 .\) Assume that the exact value of \(\sin x\) is given by a calculator. a. Complete the table showing the absolute errors in the approximations at each point. Show two significant digits. $$\begin{array}{|c|l|l|} \hline x & \text { Error }=\left|\sin x-p_{3}(x)\right| & \text { Error }=\left|\sin x-p_{5}(x)\right| \\ \hline-0.2 & & \\ \hline-0.1 & & \\ \hline 0.0 & & \\ \hline 0.1 & & \\ \hline 0.2 & & \\ \hline \end{array}$$ b. In each error column, how do the errors vary with \(x\) ? For what values of \(x\) are the errors the largest and smallest in magnitude?
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. The Taylor polynomials for \(f(x)=e^{-2 x}\) centered at 0 consist of even powers only. b. For \(f(x)=x^{5}-1,\) the Taylor polynomial of order 10 centered at \(x=0\) is \(f\) itself. c. The \(n\) th-order Taylor polynomial for \(f(x)=\sqrt{1+x^{2}}\) centered at 0 consists of even powers of \(x\) only.
Use properties of power series, substitution, and factoring of constants to find the first four nonzero terms of the Taylor series centered at 0 for the following functions. Use the Taylor series. $$(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\cdots, \text { for }-1 < x < 1$$ $$\frac{1}{(1-4 x)^{2}}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.