Chapter 10: Problem 60
Identify the functions represented by the following power series. $$\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k+1}}{4^{k}}$$
Chapter 10: Problem 60
Identify the functions represented by the following power series. $$\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k+1}}{4^{k}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeBessel functions arise in the study of wave propagation in circular geometries (for example, waves on a circular drum head). They are conveniently defined as power series. One of an infinite family of Bessel functions is $$J_{0}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k}(k !)^{2}} x^{2 k}.$$ a. Write out the first four terms of \(J_{0}\) b. Find the radius and interval of convergence of the power series for \(J_{0}\) c. Differentiate \(J_{0}\) twice and show (by keeping terms through \(x^{6}\) ) that \(J_{0}\) satisfies the equation \(x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+x^{2} y(x)=0\)
Assume that \(f\) has at least two continuous derivatives on an interval containing \(a\) with \(f^{\prime}(a)=0 .\) Use Taylor's Theorem to prove the following version of the Second Derivative Test: a. If \(f^{\prime \prime}(x) > 0\) on some interval containing \(a,\) then \(f\) has a local minimum at \(a\) b. If \(f^{\prime \prime}(x) < 0\) on some interval containing \(a,\) then \(f\) has a local maximum at \(a\)
Local extreme points and inflection points Suppose that \(f\) has two continuous derivatives at \(a\) a. Show that if \(f\) has a local maximum at \(a,\) then the Taylor polynomial \(p_{2}\) centered at \(a\) also has a local maximum at \(a\) b. Show that if \(f\) has a local minimum at \(a,\) then the Taylor polynomial \(p_{2}\) centered at \(a\) also has a local minimum at \(a\) c. Is it true that if \(f\) has an inflection point at \(a,\) then the Taylor polynomial \(p_{2}\) centered at \(a\) also has an inflection point at \(a ?\) d. Are the converses to parts (a) and (b) true? If \(p_{2}\) has a local extreme point at \(a,\) does \(f\) have the same type of point at \(a ?\)
Compute the coefficients for the Taylor series for the following functions about the given point a and then use the first four terms of the series to approximate the given number. $$f(x)=1 / \sqrt{x} \text { with } a=4 ; \text { approximate } 1 / \sqrt{3}$$
Show that the coefficients in the Taylor series (binomial series) for \(f(x)=\sqrt{1+4 x}\) about 0 are integers.
What do you think about this solution?
We value your feedback to improve our textbook solutions.