Chapter 10: Problem 59
Find the remainder in the Taylor series centered at the point a for the following functions. Then show that \(\lim _{n \rightarrow \infty} R_{n}(x)=0\) for all \(x\) in the interval of convergence. $$f(x)=e^{-x}, a=0$$
Chapter 10: Problem 59
Find the remainder in the Taylor series centered at the point a for the following functions. Then show that \(\lim _{n \rightarrow \infty} R_{n}(x)=0\) for all \(x\) in the interval of convergence. $$f(x)=e^{-x}, a=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLet $$f(x)=\sum_{k=0}^{\infty} c_{k} x^{k} \quad \text { and } \quad g(x)=\sum_{k=0}^{\infty} d_{k} x^{k}$$ a. Multiply the power series together as if they were polynomials, collecting all terms that are multiples of \(1, x,\) and \(x^{2} .\) Write the first three terms of the product \(f(x) g(x)\) b. Find a general expression for the coefficient of \(x^{n}\) in the product series, for \(n=0,1,2, \ldots\)
a. Use any analytical method to find the first four nonzero terms of the Taylor series centered at 0 for the following functions. In most cases you do not need to use the definition of the Taylor series coefficients. b. If possible, determine the radius of convergence of the series. $$f(x)=\left(1+x^{2}\right)^{-2 / 3}$$
Use properties of power series, substitution, and factoring of constants to find the first four nonzero terms of the Taylor series centered at 0 for the following functions. Use the Taylor series. $$(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\cdots, \text { for }-1 < x < 1$$ $$\frac{1}{\left(1+4 x^{2}\right)^{2}}$$
Use an appropriate Taylor series to find the first four nonzero terms of an infinite series that is equal to the following numbers. $$e^{2}$$
Find the remainder in the Taylor series centered at the point a for the following functions. Then show that \(\lim _{n \rightarrow \infty} R_{n}(x)=0\) for all \(x\) in the interval of convergence. $$f(x)=\cos x, a=\pi / 2$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.