Chapter 10: Problem 55
Identify the functions represented by the following power series. $$\sum_{k=0}^{\infty} \frac{x^{k}}{2^{k}}$$
Chapter 10: Problem 55
Identify the functions represented by the following power series. $$\sum_{k=0}^{\infty} \frac{x^{k}}{2^{k}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse an appropriate Taylor series to find the first four nonzero terms of an infinite series that is equal to the following numbers. $$\sin 1$$
Use properties of power series, substitution, and factoring to find the first four nonzero terms of the Taylor series centered at 0 for the following functions. Give the interval of convergence for the new series. Use the Taylor series. $$\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots, \text { for }-1 < x \leq 1$$ $$\sqrt{a^{2}+x^{2}}, a > 0$$
Exponential function In Section 3, we show that the power series for the exponential function centered at 0 is $$e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k !}, \quad \text { for }-\infty < x < \infty$$ Use the methods of this section to find the power series for the following functions. Give the interval of convergence for the resulting series. $$f(x)=e^{-3 x}$$
Identify the functions represented by the following power series. $$\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{4^{k}}$$
The period of a pendulum is given by $$T=4 \sqrt{\frac{\ell}{g}} \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}=4 \sqrt{\frac{\ell}{g}} F(k)$$ where \(\ell\) is the length of the pendulum, \(g \approx 9.8 \mathrm{m} / \mathrm{s}^{2}\) is the acceleration due to gravity, \(k=\sin \left(\theta_{0} / 2\right),\) and \(\theta_{0}\) is the initial angular displacement of the pendulum (in radians). The integral in this formula \(F(k)\) is called an elliptic integral and it cannot be evaluated analytically. a. Approximate \(F(0.1)\) by expanding the integrand in a Taylor (binomial) series and integrating term by term. b. How many terms of the Taylor series do you suggest using to obtain an approximation to \(F(0.1)\) with an error less than \(10^{-3} ?\) c. Would you expect to use fewer or more terms (than in part (b)) to approximate \(F(0.2)\) to the same accuracy? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.