Chapter 10: Problem 55
Find the radius of convergence of \(\sum \frac{k ! x^{k}}{k^{k}}\)
Chapter 10: Problem 55
Find the radius of convergence of \(\sum \frac{k ! x^{k}}{k^{k}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse composition of series to find the first three terms of the Maclaurin series for the following functions. a. \(e^{\sin x}\) b. \(e^{\tan x}\) c. \(\sqrt{1+\sin ^{2} x}\)
The theory of optics gives rise to the two Fresnel integrals $$S(x)=\int_{0}^{x} \sin t^{2} d t \text { and } C(x)=\int_{0}^{x} \cos t^{2} d t$$ a. Compute \(S^{\prime}(x)\) and \(C^{\prime}(x)\) b. Expand \(\sin t^{2}\) and \(\cos t^{2}\) in a Maclaurin series and then integrate to find the first four nonzero terms of the Maclaurin series for \(S\) and \(C\) c. Use the polynomials in part (b) to approximate \(S(0.05)\) and \(C(-0.25)\) d. How many terms of the Maclaurin series are required to approximate \(S(0.05)\) with an error no greater than \(10^{-4} ?\) e. How many terms of the Maclaurin series are required to approximate \(C(-0.25)\) with an error no greater than \(10^{-6} ?\)
The expected (average) number of tosses of a fair coin required to obtain the first head is \(\sum_{k=1}^{\infty} k\left(\frac{1}{2}\right)^{k} .\) Evaluate this series and determine the expected number of tosses. (Hint: Differentiate a geometric series.)
Use a Taylor series to approximate the following definite integrals. Retain as many terms as needed to ensure the error is less than \(10^{-4}\). $$\int_{0}^{0.2} \frac{\ln (1+t)}{t} d t$$
Replace \(x\) by \(x-1\) in the series \(\ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}\) to obtain a power series for \(\ln x\) centered at \(x=1 .\) What is the interval of convergence for the new power series?
What do you think about this solution?
We value your feedback to improve our textbook solutions.