Chapter 10: Problem 5
Do the interval and radius of convergence of a power series change when the series is differentiated or integrated? Explain.
Chapter 10: Problem 5
Do the interval and radius of convergence of a power series change when the series is differentiated or integrated? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse properties of power series, substitution, and factoring of constants to find the first four nonzero terms of the Taylor series centered at 0 for the following functions. Use the Taylor series. $$(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\cdots, \text { for }-1 < x < 1$$ $$\frac{1}{\left(4+x^{2}\right)^{2}}$$
Find the remainder in the Taylor series centered at the point a for the following functions. Then show that \(\lim _{n \rightarrow \infty} R_{n}(x)=0\) for all \(x\) in the interval of convergence. $$f(x)=\cos x, a=\pi / 2$$
Write the Taylor series for \(f(x)=\ln (1+x)\) about 0 and find the interval of convergence. Evaluate \(f\left(-\frac{1}{2}\right)\) to find the value of \(\sum_{k=1}^{\infty} \frac{1}{k \cdot 2^{k}}.\)
By comparing the first four terms, show that the Maclaurin series for \(\sin ^{2} x\) can be found (a) by squaring the Maclaurin series for \(\sin x,\) (b) by using the identity \(\sin ^{2} x=(1-\cos 2 x) / 2,\) or \((\mathrm{c})\) by computing the coefficients using the definition.
a. Use any analytical method to find the first four nonzero terms of the Taylor series centered at 0 for the following functions. In most cases you do not need to use the definition of the Taylor series coefficients. b. If possible, determine the radius of convergence of the series. $$f(x)=\cos 2 x+2 \sin x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.