Chapter 10: Problem 4
Suggest a Taylor series and a method for approximating \(\pi.\)
Chapter 10: Problem 4
Suggest a Taylor series and a method for approximating \(\pi.\)
All the tools & learning materials you need for study success - in one app.
Get started for freeBy comparing the first four terms, show that the Maclaurin series for \(\cos ^{2} x\) can be found (a) by squaring the Maclaurin series for \(\cos x,\) (b) by using the identity \(\cos ^{2} x=(1+\cos 2 x) / 2,\) or \((\mathrm{c})\) by computing the coefficients using the definition.
An essential function in statistics and the study of the normal distribution is the error function $$\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$$ a. Compute the derivative of erf \((x)\) b. Expand \(e^{-t^{2}}\) in a Maclaurin series, then integrate to find the first four nonzero terms of the Maclaurin series for erf. c. Use the polynomial in part (b) to approximate erf (0.15) and erf ( -0.09 ). d. Estimate the error in the approximations of part (c).
Suppose \(f\) and \(g\) have Taylor series about the point \(a.\) a. If \(f(a)=g(a)=0\) and \(g^{\prime}(a) \neq 0,\) evaluate \(\lim _{x \rightarrow a} f(x) / g(x).\) by expanding \(f\) and \(g\) in their Taylor series. Show that the result is consistent with l'Hôpital's Rule. b. If \(f(a)=g(a)=f^{\prime}(a)=g^{\prime}(a)=0\) and \(g^{\prime \prime}(a) \neq 0\) evaluate \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}\) by expanding \(f\) and \(g\) in their Taylor series. Show that the result is consistent with two applications of I'Hôpital's Rule.
Find a power series that has (2,6) as an interval of convergence.
Use Taylor series to evaluate the following limits. Express the result in terms of the parameter(s). $$\lim _{x \rightarrow 0} \frac{e^{a x}-1}{x}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.