Chapter 10: Problem 2
Does the accuracy of an approximation given by a Taylor polynomial generally increase or decrease with the order of the approximation? Explain.
Chapter 10: Problem 2
Does the accuracy of an approximation given by a Taylor polynomial generally increase or decrease with the order of the approximation? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is the minimum order of the Taylor polynomial required to approximate the following quantities with an absolute error no greater than \(10^{-3}\) ? (The answer depends on your choice of a center.) $$\sin 0.2$$
Identify the functions represented by the following power series. $$\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k+1}}{4^{k}}$$
Find the function represented by the following series and find the interval of convergence of the series. $$\sum_{k=0}^{\infty} e^{-k x}$$
The theory of optics gives rise to the two Fresnel integrals $$S(x)=\int_{0}^{x} \sin t^{2} d t \text { and } C(x)=\int_{0}^{x} \cos t^{2} d t$$ a. Compute \(S^{\prime}(x)\) and \(C^{\prime}(x)\) b. Expand \(\sin t^{2}\) and \(\cos t^{2}\) in a Maclaurin series and then integrate to find the first four nonzero terms of the Maclaurin series for \(S\) and \(C\) c. Use the polynomials in part (b) to approximate \(S(0.05)\) and \(C(-0.25)\) d. How many terms of the Maclaurin series are required to approximate \(S(0.05)\) with an error no greater than \(10^{-4} ?\) e. How many terms of the Maclaurin series are required to approximate \(C(-0.25)\) with an error no greater than \(10^{-6} ?\)
Consider the following common approximations when \(x\) is near zero. a. Estimate \(f(0.1)\) and give the maximum error in the approximation. b. Estimate \(f(0.2)\) and give the maximum error in the approximation. $$f(x)=\tan ^{-1} x \approx x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.