Chapter 1: Problem 88
a. Let \(g(x)=2 x+3\) and \(h(x)=x^{3} .\) Consider the composite function \(f(x)=g(h(x))\). Find \(f^{-1}\) directly and then express it in terms of \(g^{-1}\) and \(h^{-1}\). b. Let \(g(x)=x^{2}+1\) and \(h(x)=\sqrt{x} .\) Consider the composite function \(f(x)=g(h(x))\). Find \(f^{-1}\) directly and then express it in terms of \(g^{-1}\) and \(h^{-1}\). c. Explain why if \(g\) and \(h\) are one-to-one, the inverse of \(f(x)=g(h(x))\) exists.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.