Chapter 1: Problem 75
Find all the inverses associated with the following functions and state their domains. $$f(x)=(x+1)^{3}$$
Chapter 1: Problem 75
Find all the inverses associated with the following functions and state their domains. $$f(x)=(x+1)^{3}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeA boat approaches a 50 -ft-high lighthouse whose base is at sea level. Let \(d\) be the distance between the boat and the base of the lighthouse. Let \(L\) be the distance between the boat and the top of the lighthouse. Let \(\theta\) be the angle of elevation between the boat and the top of the lighthouse. a. Express \(d\) as a function of \(\theta\) b. Express \(L\) as a function of \(\theta\)
The Earth is approximately circular in cross section, with a circumference at the equator of 24,882 miles. Suppose we use two ropes to create two concentric circles; one by wrapping a rope around the equator and then a second circle that is \(38 \mathrm{ft}\) longer than the first rope (see figure). How much space is between the ropes?
Determine whether the following statements are true and give an explanation or counterexample. a. The range of \(f(x)=2 x-38\) is all real numbers. b. The relation \(f(x)=x^{6}+1\) is not a function because \(f(1)=f(-1)=2\) c. If \(f(x)=x^{-1},\) then \(f(1 / x)=1 / f(x)\) d. In general, \(f(f(x))=(f(x))^{2}\) e. In general, \(f(g(x))=g(f(x))\) f. In general, \(f(g(x))=(f \circ g)(x)\) g. If \(f(x)\) is an even function, then \(c f(a x)\) is an even function, where \(a\) and \(c\) are real numbers. h. If \(f(x)\) is an odd function, then \(f(x)+d\) is an odd function, where \(d\) is a real number. i. If \(f\) is both even and odd, then \(f(x)=0\) for all \(x\)
Suppose the probability of a server winning any given point in a tennis match is a constant \(p,\) with \(0 \leq p \leq 1\) Then the probability of the server winning a game when serving from deuce is $$f(p)=\frac{p^{2}}{1-2 p(1-p)}$$ a. Evaluate \(f(0.75)\) and intepret the result. b. Evaluate \(f(0.25)\) and intepret the result.
Find a formula for a function describing the given situation. Graph the function and give a domain that makes sense for the problem. Recall that with constant speed. distance \(=\) speed \(\cdot\) time elapsed or \(d=v t\) A function \(y=f(x)\) such that if your car gets \(32 \mathrm{mi} / \mathrm{gal}\) and gasoline costs \(\$ x /\) gallon, then \(\$ 100\) is the cost of taking a \(y\) -mile trip
What do you think about this solution?
We value your feedback to improve our textbook solutions.