Chapter 1: Problem 54
Solve the following equations. $$2^{x}=55$$
Chapter 1: Problem 54
Solve the following equations. $$2^{x}=55$$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the following statements are true and give an explanation or a counterexample. a. All polynomials are rational functions, but not all rational functions are polynomials. b. If \(f\) is a linear polynomial, then \(f \circ f\) is a quadratic polynomial. c. If \(f\) and \(g\) are polynomials, then the degrees of \(f \circ g\) and \(g \circ f\) are equal. d. To graph \(g(x)=f(x+2),\) shift the graph of \(f\) two units to the right.
Simplify the difference quotients \(\frac{f(x+h)-f(x)}{h}\) and \(\frac{f(x)-f(a)}{x-a}\) by rationalizing the numerator. $$f(x)=\sqrt{x}$$
The floor function, or greatest integer function, \(f(x)=\lfloor x\rfloor,\) gives the greatest integer less than or equal to \(x\) Graph the floor function, for \(-3 \leq x \leq 3\)
Prove that the area of a sector of a circle of radius \(r\) associated with a central angle \(\theta\) (measured in radians) is \(A=\frac{1}{2} r^{2} \theta\)
The surface area of a sphere of radius \(r\) is \(S=4 \pi r^{2} .\) Solve for \(r\) in terms of \(S\) and graph the radius function for \(S \geq 0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.