Chapter 1: Problem 51
Let \(g(x)=x^{2}+3 .\) Find a function \(f\) that produces the given composition. $$(f \circ g)(x)=x^{4}+6 x^{2}+9$$
Chapter 1: Problem 51
Let \(g(x)=x^{2}+3 .\) Find a function \(f\) that produces the given composition. $$(f \circ g)(x)=x^{4}+6 x^{2}+9$$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine a polynomial \(f\) that satisfies the following properties. $$(f(x))^{2}=x^{4}-12 x^{2}+36$$
Kelly has finished a picnic on an island that is \(200 \mathrm{m}\) off shore (see figure). She wants to return to a beach house that is \(600 \mathrm{m}\) from the point \(P\) on the shore closest to the island. She plans to row a boat to a point on shore \(x\) meters from \(P\) and then jog along the (straight) shore to the house. a. Let \(d(x)\) be the total length of her trip as a function of \(x .\) Graph this function. b. Suppose that Kelly can row at \(2 \mathrm{m} / \mathrm{s}\) and jog at \(4 \mathrm{m} / \mathrm{s}\). Let \(T(x)\) be the total time for her trip as a function of \(x\). Graph \(y=T(x)\) c. Based on your graph in part (b), estimate the point on the shore at which Kelly should land in order to minimize the total time of her trip. What is that minimum time?
Given the following information about one trigonometric function, evaluate the other five functions. $$\csc \theta=\frac{13}{12} \text { and } 0<\theta<\pi / 2$$
a. If \(f(0)\) is defined and \(f\) is an even function, is it necessarily true that \(f(0)=0 ?\) Explain. b. If \(f(0)\) is defined and \(f\) is an odd function, is it necessarily true that \(f(0)=0 ?\) Explain.
Find a formula for a function describing the given situation. Graph the function and give a domain that makes sense for the problem. Recall that with constant speed. distance \(=\) speed \(\cdot\) time elapsed or \(d=v t\) A function \(y=f(x)\) such that \(y\) is 1 less than the cube of \(x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.