Chapter 1: Problem 105
The shortest day of the year occurs on the winter solstice (near December 21) and the longest day of the year occurs on the summer solstice (near June 21 ). However, the latest sunrise and the earliest sunset do not occur on the winter solstice, and the earliest sunrise and the latest sunset do not occur on the summer solstice. At latitude \(40^{\circ}\) north, the latest sunrise occurs on January 4 at 7: 25 a.m. ( 14 days after the solstice), and the earliest sunset occurs on December 7 at 4: 37 p.m. ( 14 days before the solstice). Similarly, the earliest sunrise occurs on July 2 at 4: 30 a.m. (14 days after the solstice) and the latest sunset occurs on June 7 at 7: 32 p.m. ( 14 days before the solstice). Using sine functions, devise a function \(s(t)\) that gives the time of sunrise \(t\) days after January 1 and a function \(S(t)\) that gives the time of sunset \(t\) days after January \(1 .\) Assume that \(s\) and \(S\) are measured in minutes and \(s=0\) and \(S=0\) correspond to 4: 00 a.m. Graph the functions. Then graph the length of the day function \(D(t)=S(t)-s(t)\) and show that the longest and shortest days occur on the solstices.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.