Chapter 0: Problem 7
You are given the graph of a function \(f .\) Determine whether \(f\) is one-to- one.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 0: Problem 7
You are given the graph of a function \(f .\) Determine whether \(f\) is one-to- one.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the zero(s) of the function f to five decimal places. $$ f(x)=\sin 2 x-x^{2}+1 $$
a. Plot the graph of \(f(x)=\sqrt{x} \sqrt{x-1}\) using the viewing window \([-5,5] \times[-5,5]\). b. Plot the graph of \(g(x)=\sqrt{x(x-1)}\) using the viewing window \([-5,5] \times[-5,5]\). c. In what interval are the functions \(f\) and \(g\) identical? d. Verify your observation in part (c) analytically.
Show that \(f\) and \(g\) are inverses of each other by verifying that \(f[g(x)]=x\) and \(g[f(x)]=x\). $$ \begin{aligned} &f(x)=4(x+1)^{2 / 3}, \text { where } x \geq-1 \\ &g(x)=\frac{1}{8}\left(x^{3 / 2}-8\right), \text { where } x \geq 0 \end{aligned} $$
Find the inverse of \(f .\) Then sketch the graphs of \(f\) and \(f^{-1}\) on the same set of axes. $$ f(x)=\sin (2 x-1), \quad \frac{1}{2}\left(1-\frac{\pi}{2}\right) \leq x \leq \frac{1}{2}\left(1+\frac{\pi}{2}\right) $$
a. Show that if a function \(f\) is defined at \(-x\) whenever it is defined at
\(x\), then the function \(g\) defined by \(g(x)=f(x)+f(-x)\) is an even function
and the function \(h\) defined by \(h(x)=f(x)-f(-x)\) is an odd function.
b. Use the result of part (a) to show that any function \(f\) defined on an
interval \((-a, a)\) can be written as a sum of an even function and an odd
function.
c. Rewrite the function
$$
f(x)=\frac{x+1}{x-1} \quad-1
What do you think about this solution?
We value your feedback to improve our textbook solutions.